leetcode 1937. 扣分后的最大得分「动态规划」「拆项」

1937. 扣分后的最大得分

题目描述:

给你一个n*m的整数矩阵ar,一开始你的得分为0,你想最大化从矩阵中得到的分数

你的得分方式为:每一行 中选取一个格子,选中坐标为 (r, c) 的格子会给你的总得分 增加 points[r][c]

然而,相邻行之间被选中的格子如果隔得太远,你会失去一些得分。对于相邻行 rr + 1 (其中 0 <= r < m - 1),选中坐标为 (r, c1)(r + 1, c2) 的格子,你的总得分 减少 abs(c1 - c2)

请你返回你能得到的 最大 得分

思路:

很经典的拆项思路

表示前行均选择了一个格子,第 行选了第个格子,获得的最大价值

很显然状态要从上一行转移过来

如果这样暴力转移,则时间复杂度是 ,一定会超时的

我们考虑拆项,根据的大小,分情况讨论

对于 我们如果可以用的时间得到 的值就行了

所以我们记录一个前缀最大值数组和一个后缀最大值数组,分别记录即可

同时,我们可以发现转移的时候只和上一维度的值有关,可以用滚动数组优化空间

所以最后的时间复杂度是

class Solution {
public:
    long long maxPoints(vector<vector<int>>& tr) {
        int n = tr.size(), m = tr[0].size();
        vector<long long>dp(m + 1);
        vector<long long>pre(m + 2), suf(m + 2);
        for(int j = 1; j <= m + 1; ++j){
            pre[j] = j;
            suf[j] = -j;
        }
        for(int i = 1; i <= n; ++i){   
            for(int j = 1; j <= m; ++j){
                dp[j] = tr[i - 1][j - 1] + max(pre[j] - j, suf[j + 1] + j);
            }
            for(int j = 1; j <= m; ++j){
                pre[j] = max(pre[j - 1], dp[j] + j);
            }
            for(int j = m; j >= 1; --j){
                suf[j] = max(suf[j + 1], dp[j] - j);
            }
        }
        long long ans = 0;
        for(int i = 1; i <= m; ++i)ans = max(ans, dp[i]);
        return ans;
    }
};

 

博客内容均系原创,未经允许严禁转载!
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇