AtCoder Beginner Contest 233
D – Count Interval
题目描述:
给你n个数字和一个数字K,问有多少对(l, r)使得
思路:
枚举R,数有多少个L,用一个map存前缀和,对与一个数x,我们先计算sum[i],再去map里面找有多少个sum[i] – K,这就是i作为R时的贡献
//Work by: Chelsea
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 998244353
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long ll;
typedef pair <int,int> pii;
#define MAX 500000 + 50
ll n, k;
ll x, y;
ll sum[MAX];
void work(){
cin >> n >> k;
map<ll, ll>mp;
ll ans = 0;
++mp[0];
rep(i, 1, n){
cin >> x;
sum[i] = sum[i - 1] + x;
ans += mp[sum[i] - k];
++mp[sum[i]];
}
cout << ans << endl;
}
int main(){
work();
return 0;
}
E –
题目描述:
求
思路:
简答分析一下其实是可以发现,答案的第i位是(
//Work by: Chelsea
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 998244353
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long ll;
typedef pair <int,int> pii;
#define MAX 500000 + 50
ll n, m, k, op;
ll x, y, z;
ll a, b, c;
char s[MAX];
ll tr[MAX];
void work(){
scanf("%s",s);
n = (int)strlen(s);
for(int i = 1; i <= n; ++i)tr[n - i + 1] = s[i - 1] - '0';
ll jin = 0;
ll num = 0;
for(int i = 1; i <= n; ++i){
num += tr[i];
}
string ans = "";
for(int i = 1; i <= n || jin; ++i){
x = jin + num;
jin = x / 10;
ans += '0' + (x % 10);
if(num)num -= tr[i];
}
reverse(ans.begin(), ans.end());
cout << ans << endl;
}
int main(){
work();
return 0;
}
F – Swap and Sort
题目描述:
给一个长度为n的序列P,P[i]表示P[i]位于i的位置上,再给你一个m对(x, y),表示可以交换P[x] 和 P[y]的数,问你能不能满足所有的i使得P[i] = i成立,可以的话输出一个交换队列,对列的内容是那m对的编号的使用情况, 不可以的话就输出-1
思路:
显然,如果i和P[i]在一个联通块内,就可以换成功
所以我们先使用并查集判断是不是-1
再就是找交换队列,方法是两次dfs,第一次dfs就是遍历这颗树,找到叶子结点,从叶子结点开始进行交换,交换的过程就是第二次dfs
//Work by: Chelsea
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 998244353
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long ll;
typedef pair <int,int> pii;
#define MAX 500000 + 50
int n, m, k, op;
int x, y, z;
int p[MAX];
vector<pii>tr[MAX];
int fa[MAX];
inline int getfa(int x){
return x == fa[x] ? x : fa[x] = getfa(fa[x]);
}
bool emerge(int x, int y){
int xx = getfa(x);
int yy = getfa(y);
if(xx == yy)return false;
fa[xx] = yy;
return true;
}
vector<int>ans;
bool match(int u, int to, int fa){
if(p[u] == to)return true;
for(auto [v, id] : tr[u]){
if(v == fa)continue;
if(match(v, to, u)){
ans.push_back(id);
swap(p[v], p[u]);
return true;
}
}
return false;
}
bool vis[MAX];
void dfs(int x){
vis[x] = 1;
for(auto [y, id] : tr[x]){
if(!vis[y])dfs(y);
}
match(x, x, -1);
}
void work(){
cin >> n;
rep(i, 1, n)cin >> p[i];
for(int i = 1; i <= n; ++i)fa[i] = i;
cin >> m;
for(int i = 1; i <= m; ++i){
cin >> x >> y;
if(emerge(x, y)){
tr[x].push_back(m_p(y, i));
tr[y].push_back(m_p(x, i));
}
}
for(int i = 1; i <= n; ++i){
if(getfa(i) != getfa(p[i])){
cout << -1 << endl;
return;
}
}
for(int i = 1; i <= n; ++i){
if(!vis[i])dfs(i);
}
cout << (int)ans.size() << endl;
for(auto x : ans)cout << x << ' ';
cout << endl;
}
int main(){
work();
return 0;
}