观光奶牛
题目描述:
n个点,m条边,每个点都有一个权值
f[i]
,每条边都有一个权值val[i]
,求图中的一个环,使的环上“各个点的权值之和”除以“环上个各个边的权值之和”最大,输出这个最大值
思路:
考虑二分答案
假设当前二分的答案是
mid
,那至少存在一个环,使成立,转换成 ,将边的权值转换成 val[i]*mid - f[i]
,然后用SPFA判断是否存在负环即可
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long ll;
typedef pair <int,int> pii;
#define MAX 10000 + 50
int n, m, k;
int a, b;
double c;
int f[MAX];
int tot;
int head[MAX];
struct ran{
int to, nex;
double val;
}tr[MAX];
inline void add(int u, int v, double c){
tr[++tot].to = v;
tr[tot].val = c;
tr[tot].nex = head[u];
head[u] = tot;
}
double dis[MAX];
bool vis[MAX];
int num[MAX];
bool SPFA(double mid){
mem(vis, 0);mem(num, 0);
queue<int>q;q.push(0);dis[0] = 0;vis[0] = 1;
for(int i = 1; i <= n; ++i){
dis[i] = 10000000.0;
}
while (!q.empty()) {
int u = q.front();q.pop();vis[u] = 0;
for(int i = head[u]; i; i = tr[i].nex){
int v = tr[i].to;
if(dis[v] > dis[u] + tr[i].val * mid - f[v]){
dis[v] = dis[u] + tr[i].val * mid - f[v];
num[v] = num[u] + 1;
if(num[v] >= n){
return true;
}
if(!vis[v]){
vis[v] = 1;
q.push(v);
}
}
}
}
return false;
}
void work(){
cin >> n >> m;
for(int i = 1; i <= n; ++i)cin >> f[i];
for(int i = 1; i <= m; ++i){
cin >> a >> b >> c;
add(a, b, c);
}
for(int i = 1; i <= n; ++i)add(0, i, 0);
double l = 0, r = 1000.0;
while (r - l >= 1e-6) {
double mid = (l + r) / 2;
if(SPFA(mid))l = mid;
else r = mid;
}
printf("%.2f\n", l);
}
int main(){
io;
work();
return 0;
}