定义
任何一个大于 1 的数都可以被分解成有限个质数乘积的形式
其中
显然 n 最多仅有一个大于
试除法
枚举因子,将当前因子全部除尽即可,时间复杂度
int cnt;//质因子数量
int num[MAX], p[MAX];//素数个数,素数
void divide(int n){
cnt = 0;
if(n == 1){p[++cnt] = 1;num[cnt] = 1;return;}//1特判
for(int i = 2; i * i <= n; ++i){
if(n % i == 0){
p[++cnt] = i;num[cnt] = 0;
while (n % i == 0) {n /= i;++num[cnt];}
}
}
if(n > 1){p[++cnt] = n;num[cnt] = 1;}//特判n是素数
// rep(i, 1, cnt){
// cout<<p[i]<<'^'<<num[i]<<endl;
// }
}
Pollard Rho 算法
对于数据较大的情况,如
模版:
const int N = 1e5 + 7;
ll x, y, a[N];
ll max_factor;
struct BigIntegerFactor {
const static int N = 1e6 + 7;
ll prime[N], p[N], fac[N], sz, cnt;//多组输入注意初始化cnt = 0
inline ll mul(ll a, ll b, ll mod) {//WA了尝试改为__int128或慢速乘
if (mod <= 1000000000)
return a * b % mod;
return (a * b - (ll)((long double)a / mod * b + 1e-8) * mod + mod) % mod;
}
void init(int maxn) {
int tot = 0;
sz = maxn - 1;
for (int i = 1; i <= sz; ++i)
p[i] = i;
for (int i = 2; i <= sz; ++i) {
if (p[i] == i)
prime[tot++] = i;
for (int j = 0; j < tot && 1ll * i * prime[j] <= sz; ++j) {
p[i * prime[j]] = prime[j];
if (i % prime[j] == 0)
break;
}
}
}
ll qpow(ll a, ll x, ll mod) {
ll res = 1ll;
while (x) {
if (x & 1)
res = mul(res, a, mod);
a = mul(a, a, mod);
x >>= 1;
}
return res;
}
bool check(ll a, ll n) {//二次探测原理检验n
ll t = 0, u = n - 1;
while (!(u & 1)){t++; u >>= 1;}
ll x = qpow(a, u, n), xx = 0;
while (t--) {
xx = mul(x, x, n);
if (xx == 1 && x != 1 && x != n - 1)
return false;
x = xx;
}
return xx == 1;
}
bool miller(ll n, int k) {
if (n == 2)
return true;
if (n < 2 || !(n & 1))
return false;
if (n <= sz)
return p[n] == n;
for (int i = 0; i <= k; ++i) {//测试k次
if (!check(rand() % (n - 1) + 1, n))
return false;
}
return true;
}
inline ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
inline ll Abs(ll x) {
return x < 0 ? -x : x;
}
ll Pollard_rho(ll n) {//基于路径倍增的Pollard_Rho算法
ll s = 0, t = 0, c = rand() % (n - 1) + 1, v = 1, ed = 1;
while (1) {
for (int i = 1; i <= ed; ++i) {
t = (mul(t, t, n) + c) % n;
v = mul(v, Abs(t - s), n);
if (i % 127 == 0) {
ll d = gcd(v, n);
if (d > 1)
return d;
}
}
ll d = gcd(v, n);
if (d > 1)
return d;
s = t;
v = 1;
ed <<= 1;
}
}
void getfactor(ll n) {//得到所有的质因子(可能有重复的)
if (n <= sz) {
while (n != 1){fac[++cnt] = p[n]; n /= p[n];}
max_factor = max_factor > p[n] ? max_factor : p[n];
return;
}
if (miller(n, 6)) {
fac[++cnt] = n;
max_factor = max_factor > n ? max_factor : n;
}
else {
ll d = n;
while (d >= n)
d = Pollard_rho(n);
getfactor(d);
getfactor(n / d);
}
return ;
}
void getp(ll n){//得到所有的素因子及其个数
map<ll, ll>mp;//存素数及个数
cnt = 0;
getfactor(n);
for(int i = 1; i <= cnt; ++i){
++mp[fac[i]];
}
map<ll, ll>::iterator it;
for(it = mp.begin(); it != mp.end(); ++it){
cout<<it->first<<' '<<it->second<<endl;
}
}
} Q;
void work(){
//Q.init(N - 1);//如果代码超时且仅需要分解大数的质因数可以用这句话,否则不要用
ll n;cin>>n;
Q.cnt = 0;
max_factor = -1;
Q.getfactor(n);
//if(Q.cnt == 1)cout<<"Prime\n";
//else cout<<max_factor<<endl;
//Q.getp(n);
}
【模板】Pollard-Rho算法(Luogu P4718)
题目描述:
T组数据,每组数据输入一个数 n ,检验 n 是否是质数,是质数就输出 Prime。如果不是质数,输出它的最大质因子。
思路:
模版题,大数质因数分解后比较每个质因数,找到最大的就行
/*
Work by: Chelsea
Problem: 不知名屑题
Knowledge: 垃圾算法
Time: O(能过)
*/
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cmath>
#include<bitset>
#include<cstdio>
#include<string>
#include<vector>
#include<sstream>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
//#include<unordered_map>
using namespace std;
//
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize("inline")
//#pragma GCC optimize("-fgcse-lm")
//#pragma GCC optimize("Ofast")
//#pragma GCC target("fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
//#pragma GCC optimize("unroll-loops")
#define eps 1e-8
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define NMAX 1000 + 50
#define ls p<<1
#define rs p<<1|1
//#define mod 998244353
#define y1 y114514
#define lowbit(x) (x & (-x))
#define sz(s) (int)(s).size()
#define sd(n) scanf("%d",&n)
#define sl(n) scanf("%lld",&n)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define sll(n,m) scanf("%lld %lld",&n,&m)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n",n, m)
#define sddd(n,m,z) scanf("%d %d %d",&n,&m,&z)
#define slll(n,m,z) scanf("%lld %lld %lld",&n,&m,&z)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define mem(a,b) memset((a),(b),sizeof(a))
#define m_p(a,b) make_pair(a, b)
//#define int long long
typedef long long ll;
typedef pair <int,int> pii;
typedef unsigned long long ull;
//不开longlong见祖宗!
inline int IntRead(){char ch = getchar();int s = 0, w = 1;while(ch < '0' || ch > '9'){if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0';ch = getchar();}return s * w;}
typedef long long ll;
const int N = 1e5 + 7;
ll x, y, a[N];
ll max_factor;
struct BigIntegerFactor {
const static int N = 1e6 + 7;
ll prime[N], p[N], fac[N], sz, cnt; //多组输入注意初始化cnt = 0
inline ll mul(ll a, ll b, ll mod) { //WA了尝试改为__int128或慢速乘
if (mod <= 1000000000)
return a * b % mod;
return (a * b - (ll)((long double)a / mod * b + 1e-8) * mod + mod) % mod;
}
void init(int maxn) {
int tot = 0;
sz = maxn - 1;
for (int i = 1; i <= sz; ++i)
p[i] = i;
for (int i = 2; i <= sz; ++i) {
if (p[i] == i)
prime[tot++] = i;
for (int j = 0; j < tot && 1ll * i * prime[j] <= sz; ++j) {
p[i * prime[j]] = prime[j];
if (i % prime[j] == 0)
break;
}
}
}
ll qpow(ll a, ll x, ll mod) {
ll res = 1ll;
while (x) {
if (x & 1)
res = mul(res, a, mod);
a = mul(a, a, mod);
x >>= 1;
}
return res;
}
bool check(ll a, ll n) { //二次探测原理检验n
ll t = 0, u = n - 1;
while (!(u & 1)){t++; u >>= 1;}
ll x = qpow(a, u, n), xx = 0;
while (t--) {
xx = mul(x, x, n);
if (xx == 1 && x != 1 && x != n - 1)
return false;
x = xx;
}
return xx == 1;
}
bool miller(ll n, int k) {
if (n == 2)
return true;
if (n < 2 || !(n & 1))
return false;
if (n <= sz)
return p[n] == n;
for (int i = 0; i <= k; ++i) { //测试k次
if (!check(rand() % (n - 1) + 1, n))
return false;
}
return true;
}
inline ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
inline ll Abs(ll x) {
return x < 0 ? -x : x;
}
ll Pollard_rho(ll n) { //基于路径倍增的Pollard_Rho算法
ll s = 0, t = 0, c = rand() % (n - 1) + 1, v = 1, ed = 1;
while (1) {
for (int i = 1; i <= ed; ++i) {
t = (mul(t, t, n) + c) % n;
v = mul(v, Abs(t - s), n);
if (i % 127 == 0) {
ll d = gcd(v, n);
if (d > 1)
return d;
}
}
ll d = gcd(v, n);
if (d > 1)
return d;
s = t;
v = 1;
ed <<= 1;
}
}
void getfactor(ll n) { //得到所有的质因子(可能有重复的)
if (n <= sz) {
while (n != 1){fac[++cnt] = p[n]; n /= p[n];}
max_factor = max_factor > p[n] ? max_factor : p[n];
return;
}
if (miller(n, 6)) {
fac[++cnt] = n;
max_factor = max_factor > n ? max_factor : n;
}
else {
ll d = n;
while (d >= n)
d = Pollard_rho(n);
getfactor(d);
getfactor(n / d);
}
return ;
}
void getp(ll n){
map<ll, ll>mp;
cnt = 0;
getfactor(n);
for(int i = 1; i <= cnt; ++i){
++mp[fac[i]];
}
map<ll, ll>::iterator it;
for(it = mp.begin(); it != mp.end(); ++it){
cout<<it->first<<' '<<it->second<<endl;
}
}
} Q;
void work(){
//Q.init(N - 1);//如果代码超时且仅需要分解大数的质因数可以用这句话,否则不要用
ll n;cin>>n;
Q.cnt = 0;
max_factor = -1;
Q.getfactor(n);
if(Q.cnt == 1)cout<<"Prime\n";
else cout<<max_factor<<endl;
// Q.getp(n);
}
int main() {
int _t;cin>>_t;
while (_t--) {
work();
}
return 0;
}
分解问题的扩展
Problem A 阶乘分解(AcWing 197)
题目描述:
给定整数 N,试把阶乘 N!分解质因数,按照算术基本定理的形式输出分解结果中的 pi 和 ci 即可
思路:
我们需要求
一个显然的结论是:1到n中是p的倍数的数字有
个 所以对于一个质因子p来说:
中含p的个数是 拿2来说就是n/2向下取整,这计算的是1到n中能贡献一个2的数量,再计算n/4向下取整,这计算的是1到n中能贡献两个2的数量,依次这样算下去就可以
所以这个题的思路是,先筛出所有的素数,然后挨个计算每个素数的C,然后输出就行
/*
Work by: Chelsea
Problem: 不知名屑题
Knowledge: 垃圾算法
Time: O(能过)
*/
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cmath>
#include<bitset>
#include<cstdio>
#include<string>
#include<vector>
#include<sstream>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
//#include<unordered_map>
using namespace std;
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("Ofast")
#pragma GCC target("fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
#pragma GCC optimize("unroll-loops")
#define eps 1e-8
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define NMAX 1000 + 50
#define ls p<<1
#define rs p<<1|1
#define mod 998244353
#define y1 y114514
#define lowbit(x) (x & (-x))
#define sz(s) (int)(s).size()
#define sd(n) scanf("%d",&n)
#define sl(n) scanf("%lld",&n)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define sll(n,m) scanf("%lld %lld",&n,&m)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n",n, m)
#define sddd(n,m,z) scanf("%d %d %d",&n,&m,&z)
#define slll(n,m,z) scanf("%lld %lld %lld",&n,&m,&z)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define mem(a,b) memset((a),(b),sizeof(a))
#define m_p(a,b) make_pair(a, b)
//#define int long long
typedef long long ll;
typedef pair <int,int> pii;
typedef unsigned long long ull;
//不开longlong见祖宗!
inline int IntRead(){char ch = getchar();int s = 0, w = 1;while(ch < '0' || ch > '9'){if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0';ch = getchar();}return s * w;}
//不改范围见祖宗!!!
#define MAX 300000 + 50
int n, m, k, op;
int x, y, z;
ll a, b, c;
string s, t;
int tot;
int prime[100000];
bool vis[1000005];
void init(int n){
for(int i = 2; i <= n; ++i){
if(!vis[i])prime[++tot] = i;
for(int j = 1; j <= tot && prime[j] * i <= n; ++j){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0)break;
}
}
}
void work(){
init(1000000);
cin>>n;
for(int i = 1; i <= tot && prime[i] <= n; ++i){
ll ans = 0;
ll x = n;
while (x) {
ans += x / prime[i];
x /= prime[i];
}
cout<<prime[i]<<' '<<ans<<endl;
}
}
int main(){
io;
// int tt;cin>>tt;
// for(int _t = 1; _t <= tt; ++_t){
// printf("Case #%d: ", _t);
work();
// }
return 0;
}
Problem C Divisors of the Divisors of an Integer(2018-2019 ACM-ICPC, Asia Dhaka Regional ContestC)
题目描述:
给出 n,问 n ! 的因子的因子的个数和
思路:
单独分析其中一个p,有C个p,那有
共1 + C个因子,每个因子 都有i+1个因子,合起来就是 ,利用等差数列求和公式即可求出 求n!的p因子的个数还是要用到上个题的方法
最后将每个p的结果相乘就是答案
/*
Work by: Chelsea
Problem: 不知名屑题
Knowledge: 垃圾算法
Time: O(能过)
*/
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cmath>
#include<bitset>
#include<cstdio>
#include<string>
#include<vector>
#include<sstream>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
//#include<unordered_map>
using namespace std;
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("Ofast")
#pragma GCC target("fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
#pragma GCC optimize("unroll-loops")
#define eps 1e-8
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define NMAX 1000 + 50
#define ls p<<1
#define rs p<<1|1
#define mod 10000007
#define y1 y114514
#define lowbit(x) (x & (-x))
#define sz(s) (int)(s).size()
#define sd(n) scanf("%d",&n)
#define sl(n) scanf("%lld",&n)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define sll(n,m) scanf("%lld %lld",&n,&m)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n",n, m)
#define sddd(n,m,z) scanf("%d %d %d",&n,&m,&z)
#define slll(n,m,z) scanf("%lld %lld %lld",&n,&m,&z)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define mem(a,b) memset((a),(b),sizeof(a))
#define m_p(a,b) make_pair(a, b)
//#define int long long
typedef long long ll;
typedef pair <int,int> pii;
typedef unsigned long long ull;
//不开longlong见祖宗!
inline int IntRead(){char ch = getchar();int s = 0, w = 1;while(ch < '0' || ch > '9'){if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0';ch = getchar();}return s * w;}
//不改范围见祖宗!!!
#define MAX 300000 + 50
ll n, m, k, op;
int x, y, z;
ll a, b, c;
string s, t;
int tot;
int prime[100005];
bool vis[1000005];
void init(int n){
for(int i = 2; i <= n; ++i){
if(!vis[i])prime[++tot] = i;
for(int j = 1; j <= tot && prime[j] * i <= n; ++j){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0)break;
}
}
}
ll cal(ll x, ll p){
ll ans = 0;
while (x) {
ans += x / p;
x /= p;
}
return ans;
}
void work(){
init(1000000);
while (cin>>n && n) {
ll ans = 1;
for(int i = 1; i <= tot && prime[i] <= n; ++i){
ll num = cal(n, prime[i]);
ans *= (num + 1) * (num + 2) / 2;
ans %= mod;
}
cout<<ans<<endl;
}
}
int main(){
io;
// int tt;cin>>tt;
// for(int _t = 1; _t <= tt; ++_t){
// printf("Case #%d: ", _t);
work();
// }
return 0;
}
Problem D Multiply(2019 ACM- ICPC Asia Xuzhou Regional Contest E)
题目描述:
给 n 个数的序列a,定义
,给出X,Y,若 ,求最大的 i 使得
思路:
由于规定
,所以 故
对与
的条件是:对a质因数分解后变成 ,对b质因数分解后 ,a的所有质因子pi必须在b中存在,且必须满足 对于X的一个质因子p,X质因子分解后有a个p,Y!有b个p,Z有c个p,则
, ,贪心求出最小的 i 就是答案 所以我们先对X进行质因数分解,得到所有的质因子及个数,再对于一个质数p,我们对ai进行循环计算ai!有几个p,求个合,这就是c,再计算Y!有几个p,这就是b,然后计算
即可,最后对所有的 i 求最小值 计算N!有几个p的方法在上面介绍过了,写个函数算就行
/*
Work by: Chelsea
Problem: 不知名屑题
Knowledge: 垃圾算法
Time: O(能过)
*/
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cmath>
#include<bitset>
#include<cstdio>
#include<string>
#include<vector>
#include<sstream>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
//#include<unordered_map>
using namespace std;
//
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize("inline")
//#pragma GCC optimize("-fgcse-lm")
//#pragma GCC optimize("Ofast")
//#pragma GCC target("fma,sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
//#pragma GCC optimize("unroll-loops")
#define eps 1e-8
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define NMAX 1000 + 50
#define ls p<<1
#define rs p<<1|1
//#define mod 998244353
#define y1 y114514
#define lowbit(x) (x & (-x))
#define sz(s) (int)(s).size()
#define sd(n) scanf("%d",&n)
#define sl(n) scanf("%lld",&n)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define sdd(n,m) scanf("%d %d",&n,&m)
#define sll(n,m) scanf("%lld %lld",&n,&m)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n",n, m)
#define sddd(n,m,z) scanf("%d %d %d",&n,&m,&z)
#define slll(n,m,z) scanf("%lld %lld %lld",&n,&m,&z)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define mem(a,b) memset((a),(b),sizeof(a))
#define m_p(a,b) make_pair(a, b)
//#define int long long
typedef long long ll;
typedef pair <int,int> pii;
typedef unsigned long long ull;
//不开longlong见祖宗!
inline int IntRead(){char ch = getchar();int s = 0, w = 1;while(ch < '0' || ch > '9'){if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0';ch = getchar();}return s * w;}
const int N = 1e5 + 7;
ll x, y, tr[N];
ll max_factor;
struct BigIntegerFactor {
const static int N = 1e6 + 7;
ll prime[N], p[N], fac[N], sz, cnt; //多组输入注意初始化cnt = 0
inline ll mul(ll a, ll b, ll mod) { //WA了尝试改为__int128或慢速乘
if (mod <= 1000000000)
return a * b % mod;
return (a * b - (ll)((long double)a / mod * b + 1e-8) * mod + mod) % mod;
}
void init(int maxn) {
int tot = 0;
sz = maxn - 1;
for (int i = 1; i <= sz; ++i)
p[i] = i;
for (int i = 2; i <= sz; ++i) {
if (p[i] == i)
prime[tot++] = i;
for (int j = 0; j < tot && 1ll * i * prime[j] <= sz; ++j) {
p[i * prime[j]] = prime[j];
if (i % prime[j] == 0)
break;
}
}
}
ll qpow(ll a, ll x, ll mod) {
ll res = 1ll;
while (x) {
if (x & 1)
res = mul(res, a, mod);
a = mul(a, a, mod);
x >>= 1;
}
return res;
}
bool check(ll a, ll n) { //二次探测原理检验n
ll t = 0, u = n - 1;
while (!(u & 1)){t++; u >>= 1;}
ll x = qpow(a, u, n), xx = 0;
while (t--) {
xx = mul(x, x, n);
if (xx == 1 && x != 1 && x != n - 1)
return false;
x = xx;
}
return xx == 1;
}
bool miller(ll n, int k) {
if (n == 2)
return true;
if (n < 2 || !(n & 1))
return false;
if (n <= sz)
return p[n] == n;
for (int i = 0; i <= k; ++i) { //测试k次
if (!check(rand() % (n - 1) + 1, n))
return false;
}
return true;
}
inline ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
inline ll Abs(ll x) {
return x < 0 ? -x : x;
}
ll Pollard_rho(ll n) { //基于路径倍增的Pollard_Rho算法
ll s = 0, t = 0, c = rand() % (n - 1) + 1, v = 1, ed = 1;
while (1) {
for (int i = 1; i <= ed; ++i) {
t = (mul(t, t, n) + c) % n;
v = mul(v, Abs(t - s), n);
if (i % 127 == 0) {
ll d = gcd(v, n);
if (d > 1)
return d;
}
}
ll d = gcd(v, n);
if (d > 1)
return d;
s = t;
v = 1;
ed <<= 1;
}
}
void getfactor(ll n) { //得到所有的质因子(可能有重复的)
if (n <= sz) {
while (n != 1){fac[cnt ++ ] = p[n]; n /= p[n];}
// max_factor = max_factor > p[n] ? max_factor : p[n];
return;
}
if (miller(n, 6)) {
fac[cnt ++ ] = n;
// max_factor = max_factor > n ? max_factor : n;
}
else {
ll d = n;
while (d >= n)
d = Pollard_rho(n);
getfactor(d);
getfactor(n / d);
}
return ;
}
ll cal(ll n, ll x) {//计算 n! 中质因子 x 的数量
ll num = 0;
while (n) {
num += n / x;
n = n / x;
}
return num;
}
ll getans(ll n, ll x, ll y){
ll ans = 4e18;
cnt = 0;
getfactor(x);
map<ll, ll>mp;
for(int i = 0; i < cnt; ++i)++mp[fac[i]];
map<ll, ll>::iterator it;
for(it = mp.begin(); it != mp.end(); ++it){
ll num = 0;
for(int i = 1; i <= n; ++i){
num += cal(tr[i], it->first);
}
ans = min(ans, (cal(y, it->first) - num) / it->second);
}
return ans;
}
} Q;
int main() {
ll T, n;
cin>>T;
while (T--) {
cin>>n>>x>>y;
rep(i, 1, n)cin>>tr[i];
cout<<Q.getans(n, x, y)<<endl;
}
return 0;
}
特殊的结论
- n最多仅有一个大于
的质因子 ,p是素数 %k!=0